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Our main project objectives are to develop computational techniques based on inverse problem theory that 
can be used to design directional solidification processes that lead to desired temperature gradient and growth 
conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays 
a significant role in the selection of the form and scale of the obtained solidification microstructures.

Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification 
front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of 
an externally applied magnetic field are the main design variables.  We will highlight computational design 
models for sharp front solidification models and briefly discuss work in progress toward the development of 
design techniques for multi-phase volume-averaging based solidification models.

Model Description
Let us introduce a model directional solidification problem of a dilute, incompressible, electrically 
conducting binary alloy in a two-dimensional rectangular enclosure with an open boundary (Fig. 1). At 
time t = 0+, a cooling heat flux is applied on the mold boundary ΓOS and solidification commences. Here, 
we assume a-priori that the growth conditions are such that solidification occurs with a stable solid-liquid 
interface [1]. This model provides us with the opportunity to concentrate on the melt flow mechanisms and 
in addition to control interface quantities that are readily available in the direct analysis.

In the following problem definition, the following dimensionless numbers are used [1], [2]:  θ 
(dimensionless temperature) ≡ (T – To)/∆T, Ha (Hartmann number), Le (Lewis number), MaT (thermal 
Marangoni number), RaT (thermal Rayleigh number), RaC (solutal Rayleigh number), Rα (ratio of thermal 
diffusivities), Rk (ratio of thermal conductivities) and Ste (Stefan number). The equations governing the 
various transport mechanisms in the melt in the binary alloy solidification system are 
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The thermal field distribution in the solid is governed by the heat conduction equation:

                                                                                                                   (4)
                         

Figure 1: Schematic of the binary alloy solidification problem in an open boat configuration under the 
influence of an externally applied magnetic field.

The interfacial temperature is determined by the equilibrium phase diagram:
                                                                                                                     (5)
where the dimensionless slope m of the liquidus  is given as m=mliquidusΔc/ΔT, mliquidus is the dimensional 
slope of the liquidus and θm is the dimensionless melting temperature.

The interfacial thermal and solute fluxes are governed by the Stefan condition and the solute conservation 
condition on the freezing interface:
                                                                                               (6)

                                                                                              (7)

where the normal vector n is pointing out from the liquid domain, κ is the partition coefficient and δ ≡ 
co/∆c is the ratio of the reference concentration co and reference concentration drop ∆c.

No-slip and no-penetration boundary conditions are imposed on all surfaces other than the upper free 
surface. The hydrodynamic condition on Γtl is of the form:
                                                                                                   (8)

where t, is a tangent vector to the free-surface. Insulating thermal boundary conditions are imposed on 
the top and bottom boundaries of the solid and liquid domains. Thermal boundary conditions are provided 
on Γos and Γol. Finally, a solute impermeable condition is imposed on the mold boundaries and the free 
surface. 
 
The solution scheme implemented uses a front-tracking SUPG/PSPG finite element method with mass 
lumping and preconditioning [1].
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Reference Design And Parametric Studies
Before we address computational design solidification problems, it is imperative to provide an understanding 
of the effects of the various physical mechanisms on the local to the freezing front conditions. A parametric 
study was performed in this context to investigate the effects of various process parameters. 

Let us consider a rectangular cavity with an open free surface of dimensions 2 cm x1 cm initially filled 
with molten antimony-doped germanium at 40oC overheat (Fig. 1). The wall Γol is maintained at the initial 
temperature, while Γos is suddenly cooled to a temperature 40oC below the melting temperature of pure 
germanium and maintained at that temperature for t > 0. The thermophysical properties are extracted from 
[1]. 
 
At t=0+ solidification starts and takes place under standard laboratory conditions. We refer to this problem 
as the reference design problem.  The results of the reference design problem at τ = 10 are shown on the 
left of Fig. 2.

 Figure 2: Normal gravity and zero magnetic field conditions for the solidification of SbGe. On the left: 
Contours of stream function, solute concentration and temperature fields at time τ = 10. On the right: 

Calculated history of the solid-liquid interface concentration during the entire simulation.

Figure 2 also presents the history of the concentration on ΓI during the entire simulation. This plot 
effectively shows the pattern of the solute variation obtained in the final solid. To assess the relative 
importance of thermocapillary versus buoyancy effects on solidification, a   calculation was performed 
for solidification in a very low-gravity g=10-5 gearth environment (Fig. 3) At early times τ < 0.5, thermal 
gradients on the free surface lead to surface-tension gradients and a thermocapillary flow develops 
slowly, forming a small counter-clockwise cell around the free surface very close to ΓI . There is almost no 
convection in the lower part of the cavity at this time. As the solidification proceeds further, the strength 
of this recirculating fluid flow slowly increases, along with a steady increase in the size of the cell. Around 
τ =2, the main recirculating cell fills almost the entire cavity. At the same time, a secondary cell pattern 
forms at the right end of the cavity. After around τ =3 there is almost no change in the structure of the main 
cell, even though its strength steadily increases with time (Fig. 3 (left)).

This complex evolution of the melt flow has significant impact on various solidification parameters (e.g. 
compare Figs. 2 (right) and 3 (right)) [1].
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Figure 3: Reduced   gravity (g=10-5 gearth) conditions and zero magnetic field for the solidification of 
SbGe. On the left: Calculated contours of stream function, solute concentration and temperature fields 

at time τ = 10. Notice the significant influence of the flow field on the solute distribution in the melt. On 
the right: Calculated history of the solid-liquid interface concentration during the entire simulation.

An extensive series of simulations were conducted under various levels of gravity (Fig. 4). These 
studies have shown that ‘flat interface growth’ cannot be achieved by a reduced gravity environment and 
additional means of control are needed. Simulations were also conducted at various inclinations of the 
magnetic field. Figure 5 shows the variety of flow patterns obtained for various magnetic field inclinations 
at time τ =10. The prominent effect of varying the orientation of the magnetic field is to drastically alter 
the structure of the fluid flow especially under reduced gravity conditions. 

Finally, Figure 6 illustrates the variety of melt flow patterns obtained by varying the strength of the 
applied horizontal magnetic field under normal and reduced gravity conditions.  An increasing magnetic 
field damps the melt flow and also has significant impact on the structure of the flow and application of 
sufficiently high magnetic fields (Fig. 6(c)) leads to separation of the thermocapillary- and buoyancy-
driven rolls.   As one can note from Fig. 6(f), solidification under reduced gravity and sufficiently strong 
magnetic field ensures that the solid-liquid interface is almost flat which in fact is one of the objectives 
of the design problems under consideration. In the following section, we will briefly highlight a design 
methodology to achieve a desired flat-interface growth that is also ensured to be morphologically stable.

In closure, Fig. 7 compares the solute pattern obtained under normal and reduced gravity conditions with 
an applied magnetic field. As expected, markedly different transport patterns in the two systems lead to 
entirely different form of solute segregation. As seen in Fig. 7(a), the maximum solute concentration 
under normal gravity conditions is seen in the bottom part of the rectangular cavity at very early times.   
In contrast, Fig. 7(b) shows that the maximum solute collection occurs very near the free-surface and at 
early times. This trend is in conformity with the fluid flow circulation which is restricted mainly to regions 
close to the free-surface.
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Figure 4: Effects of gravity with no magnetic field: Contours of stream function at time τ = 5 for the 
solidification of SbGe under varying levels of gravity: (a) 0.5gearth (b) 0.1gearth (c) 0.01gearth (d) 10-5gearth. 

Inverse Design To Achieve A Desired Stable Growth
Using parametric studies to compute the optimal process conditions becomes an expensive and time-
demanding process. To alleviate such difficulties, a computational design framework was developed 
for the thermal design of directional solidification processes. The objective here is to control the mold 
wall cooling/heating boundary conditions in order to achieve a desired stable interface growth. As a first 
attempt, the magnitude and orientation of the magnetic field and gravity are a-priori selected based on the 
parametric studies discussed earlier. 

To simplify the design analysis presented here, we assume eutectic solidification with the interfacial 
temperature of the liquid and solid and composition of the liquid given by  
                                             θl = θs = θE      and  c=cE   on   ΓI(t)                                (9)
The solid composition is determined by the dimensionless mass balance

                                                                                               (10)

With all remaining governing equations as given earlier, we pose the following inverse design problem 
(see Fig. 8):

Find the cooling heat flux qos (x, t) on the boundary Γos as well as the heat flux condition qol (x, t) on 
the vertical mold wall Γol (see Fig. 8a) so that in the presence of coupled thermocapillary, buoyancy 
and electromagnetically driven convection in the melt, a desired flat-interface growth (with desired 
flux G and growth velocity vf ) is achieved that is ensured to be morphologically stable.
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Figure 5: Effect of magnetic field orientation: Calculated contours of stream function at time τ = 10 for the 
solidification of SbGe under the influence of an externally imposed horizontal magnetic field (Ha=100) at 
various magnetic field orientations. Solidification under normal gravity conditions: (a) along the x-axis; 

(b) 60o ccw to the x-axis; (c) along the y-axis, Solidification under reduced-gravity 10-5gearth conditions: (d) 
along the x-axis; (e) 60o ccw to the x-axis; (f) along the y-axis.

The above inverse design problem can be divided into two sub problems, one inverse problem in the solid 
region and another in the liquid region [3]. This is possible since, as part of the design objectives, the 
location of the interface ΓI is explicitly known through the given growth velocity vf. The inverse problem 
in the solid domain is the well-studied inverse heat conduction problem. The inverse problem in the liquid 
domain is depicted in Fig. 8(b) and it involves coupled effects of thermocapillary, buoyancy and electro-
magnetic forces [4, 5, 6].

As a first step, in this work, the constitutional stability criterion is considered to enforce the morphological 
stability of the solid-liquid interface.  In particular, we consider the following constraint on the G/| vf | 
ratio [4], 
                                                                                                (11)  
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Figure 6: Effect of the magnetic field strength: Calculated contours of stream function at time τ = 10 for 
the solidification of SbGe. Solidification under normal gravity conditions: (a) Ha=10 (b) Ha=100 (c) 
Ha=200, Growth under reduced gravity (g = 10-5gearth) conditions: (d) Ha=10 (e) Ha=100 (f) Ha=200.

Figure 7: History of the solid-liquid interface concentration during the entire simulation of SbGe 
solidification for Ha=100:  (a) normal gravity conditions; (b) reduced gravity (g=10-5 gearth) conditions.

to be sufficient to ensure stability of the solid-liquid interface. We herein enforce stability by explicitly 
choosing an interface thermal gradient G and growth velocity vf such that G/| vf | marginally satisfies the 
constraint given in equation (11). In our preliminary work, we have chosen vf as the growth corresponding 
to diffusion based process [4]. 
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Figure 8: Definition of the design eutectic solidification problem. The design objectives are the 
achievement of a desired growth vf under the conditions of marginal stability.

In the following discussion, we present the essentials of the adjoint method for solving the above 
described inverse design eutectic solidification problem. The space of admissible controls is defined as 
the Hilbert space U=H1(Γol×[0,tmax]).  With a guessed heat flux qol(x,t), (x,t)äΓol×[0,tmax], one can define a 
direct coupled thermocapillary-buoyancy-electromagnetic convection problem on the prescribed domain 
Ωl (t). Let us denote its solution for the temperature, concentration and flow fields as θ(x, t; qol), c(x, t; qol) 
and v(x, t; qol), respectively. The equilibrium condition θ(x, t) = θE, (x,t)ä ΓI ×[0,tmax] is not used in this 
direct problem definition, thus it is not guaranteed to be satisfied. For an arbitrary qolä H1(Γol×[0,tmax]), we 
define a cost functional:

              (12)

where γ ä R+ is an appropriate regularization parameter chosen based on the numerical errors in the 
algorithm. In this paper, our objective is to construct a minimizing sequence qk

ol (x,t)äU, that converges to 
at least a local minimum of J(qol). 

To perform the optimization procedure that minimizes J(qol), we will need to define a continuum 
sensitivity problem in terms of  the  sensitivity  velocity  field V(x,t;qol ), sensitivity temperature field 
Q(x,t;qol ) and sensitivity concentration field C (x,t;qol ). This linear problem is derived by computing 
the linear perturbations of the fields θ(x,t;qol ), c(x,t;qol ) and v(x,t;qol ), respectively, with respect to the 
variations ∆qol (x, t) of the design heat flux qol [3]-[8]. In order to realize the minimization of J(qol), it is 
essential to find its gradient J’(qol) with respect to the design flux qol. An associated adjoint problem  can 
be defined in terms of the adjoint velocity field  f (x,t;qol), adjoint temperature field  ψ (x,t;qol), and adjoint 
concentration field  ρ ( x,t;qol). The gradient of J (qo) with respect to the scalar product  (.,.)H1(Γol×[0,tmax]) 

º 
(.,.)L2(Γol×[0,tmax]) 

+ (∇.,∇.)L2(Γol×[0,tmax]) 
was shown to be given by [5,6]
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where z is  the solution of an additional variational equation on Γol:
                                                                                         (14)
Thus, to calculate the gradient of the cost functional including an H1 type regularized formulation, the 
solution component  ψ (x,t;qol)of the adjoint equations  has to be first computed together with the solution 
z of the above variational problem. 
 
After having obtained an analytical expression for the exact gradient, any of the standard functional 
minimization techniques can be used for solving the above defined optimization problem such as the non-
linear conjugate gradient method (CGM) [6].

Numerical Example In The Design Of Eutectic Solidification
Consider a rectangular cavity with an open free surface of dimensions 20 mm x 20 mm filled with molten 
Sb - 8.6 wt% Ge, initially at 100oC above the eutectic temperature (592o C). At time t = 0+, the left wall 
Γos is suddenly cooled to a temperature 100 oC below the eutectic temperature and maintained at that 
temperature for times t >0. All other walls are insulated.  The thermophysical properties  are given in [4].  
 
At t = 0+ the freezing process starts and takes place under standard laboratory conditions. We refer to 
this problem as the reference design problem. In [4] it has been shown that the solution of this reference 
problem leads to a complex variation of solute in the product and in addition corresponds to a physically 
unrealistic (unstable) process. A design problem is thus introduced to compute the transient mold walls 
thermal conditions for the reference eutectic solidification system such that a stable growth is achieved 
with a growth velocity equal to that of a solidification problem controlled only by heat/solute diffusion. A 
horizontal magnetic field of Ha = 36.74 is applied. This design example computes process parameters that 
lead to “diffusion-based’’ conditions in the presence of convection. We pose the following problem:

Find the thermal boundary conditions on the left wall x = 0 and the right wall x = 1 such that with coupled 
thermocapillary, buoyancy, and electromagnetic convection in the melt, a vertical desired interface growth 
is achieved that is morphologically stable (see Fig. 8).

The inverse solidification problem can be decomposed into an inverse heat conduction problem in the solid 
and a inverse convection problem in the melt (Fig. 8).  The inverse problem in the liquid domain solves for 
qol(y, t) at x = 1 using the given freezing interface velocity vf (t) and the interface thermal gradient G. vf (t) 
is here defined by solving a direct solidification problem without the effects of melt convection and G is 
chosen using this interface velocity field such that the stability condition is marginally satisfied.  An initial 
guess q0

ol(y, t) ≡ 0 corresponding to the reference eutectic solidification problem was chosen to start the 
CGM algorithm. Within each CGM iteration, the direct, adjoint and sensitivity problems are solved using 
the same finite element algorithms [7].

The development of the heat flux profiles during the intermediate stages of CGM process is shown in Fig. 
9. Note that this optimal heat flux profile            shows largest heating at very early times. This strong 
heating flux has to be applied at early times in order to counteract the effects of coupled thermocapillary 
and buoyancy-driven fluid flow at the very early stages of the solidification process.  It is the combined 
application of the heat fluxes              and              , which leads to the desired stable growth conditions.        
                  

− + =∆z x t z x t x t qol( , ) ( , ) ( , ; )ψ
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Figure 9: Flux distribution qk
ol(y, t) obtained at CGM iterations k = 1, 2, 5, and 10, starting from an initial 

guess heat flux q0
ol(y, t) ≡ 0. The solution at k=10 is nearly the final optimal solution.

We proceed to evaluate how close the desired design objectives have been met. A direct eutectic 
solidification problem is considered with the calculated optimal solid side flux               applied on the left 
boundary x = 0 (not shown here) and the liquid side flux             applied on the right boundary x= 1. The 
top and bottom walls are, as before, insulated. We refer to this problem as the optimal design eutectic-
solidification problem.               

Representative transient temperature, concentration and flow fields corresponding to the optimal design 
problem are illustrated in Fig. 10. The strong heating flux on the right boundary x = 1 is necessary to 
overcome the solutal undercooling and maintain a stable interface growth throughout the process. Figure 
11(b) shows the dimensionless contours of ∆(y, t) ≡ G/| vf | + m (CE -Co)/DL as a function of the y-coordinate 
and time. Stable growth (∆(y, t) ≥ 0) is achieved for the entire duration of solidification confirming the 
realization of the design objectives. Finally, in Fig. 11(a) note the vertical uniformity in the solid composition 
in comparison to the stratification observed in the initial design given in Reference [4]. 

q y tos ( , )
q y tol ( , )
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Figure 10:  Contours of the fluid stream function (a-c), isotherms (d-f) and composition (g- i) for the 
optimal design eutectic solidification simulation. Results are shown at times   τ = 0.1, τ = 0.8 and τ = 1.5.

Further Developments
We are currently extending the above design algorithms to volume averaging based solidification models 
with main objectives the control of the solidification conditions within the mushy zone. A continuum 
sensitivity framework is being developed to allow us to perform gradient-based design optimization 
problems with the thermal boundary conditions, the level of gravity and the magnetic field being the 
main design variables. In contrast to the design problems discussed earlier, our design objectives are now 
defined within the mushy zone where all micro structural features are determined. In between various 
design problems, we are particularly interested at optimization problems that can be used to control the 
mushy zone morphology as well as the homogeneity of the solidified product.  
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Figure 11: (a) The solid composition for the optimal solidification problem. The contours are labeled in 
wt% Germanium (b) dimensionless contours of ∆ ≡ G/|vf | + m (CE -Co)/DL are displayed. Notice that 

stable growth is achieved for the entire duration of solidification.
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